翻訳と辞書 |
Spin-transfer torque : ウィキペディア英語版 | Spin-transfer torque Spin-transfer torque is an effect in which the orientation of a magnetic layer in a magnetic tunnel junction or spin valve can be modified using a spin-polarized current. Charge carriers (such as electrons) have a property known as spin which is a small quantity of angular momentum intrinsic to the carrier. An electric current is generally unpolarized (consisting of 50% spin-up and 50% spin-down electrons); a spin polarized current is one with more electrons of either spin. By passing a current through a thick magnetic layer (usually called the “fixed layer”), one can produce a spin-polarized current. If this spin-polarized current is directed into a second, thinner magnetic layer (the “free layer”), angular momentum can be transferred to this layer, changing its orientation. This can be used to excite oscillations or even flip the orientation of the magnet. The effects are usually only seen in nanometer scale devices. ==Spin-transfer torque memory== Spin-transfer torque can be used to flip the active elements in magnetic random-access memory. Spin-transfer torque magnetic random-access memory (STT-RAM or STT-MRAM) has the advantages of lower power consumption and better scalability over conventional magnetoresistive random-access memory (MRAM) which uses magnetic fields to flip the active elements. Spin-transfer torque technology has the potential to make possible MRAM devices combining low current requirements and reduced cost; however, the amount of current needed to reorient the magnetization is at present too high for most commercial applications, and the reduction of this current density alone is the basis for current academic research in spin electronics.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Spin-transfer torque」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|